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FOREWORD 

With the increasing use of composites in aero-space structure 

components, survivability and vulnerability of the composites when 

exposed to intense thermal irradiation become a critical concern.  New 

materials with desirable surface characteristics are being explored to 

mitigate the likely encountered thermal loadings; and parallel to these 

developments, more reliable methods of analyzing the effects of inspired 

surface heat flux on the interior temperature responses of composite 

structures are needed. 

The investigation reported here is a preliminary step to examine 

the basic needs for analytic tools to assess the temperature dis- 

tributions in composites.  Contained in this'report are a new method of 

analyzing cyclic surface temperature fluctuations, temperature response 

results of composite panels due to spot-heating, and a comparative study 

of the effect of surface coating on the temperature rise of a substrate 

layer. 

The work was sponsored by Air Force Flight Dynamic Laboratory with 

Mr. Nelson Wolf as the Technical Monitor; it was begun in June 1983 and 

completed in May 1984. 
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1.  INTRODUCTION 

Light weight, high strength and dimensional stability are among the 

principal advantages of composite materials in comparison to metals, and 

consequently have led to their ever-increasing use in aerospace struc- 

tures. For the same reasons, a lengthening list of new composite 

materials is emerging into the marketplace for specific applications. 

In the new applications there exist environmental factors, heretofore 

uncontemplated, where thermal considerations are a prime concern. 

Severity of the thermal environments, in which composite materials are 

expected to function, plays a critical role not only in their selection, 

but also in the conceptual stage of composites' development as aerospace 

structural components. In order to assess the ability of composite 

materials from a thermal viewpoint, an analytical determination of the 

temperature responses of candidate structures is of course a first step 

leading to, and pinpointing, further refinements and subsequent develop- 

mental efforts. 

For thermal analysis, the most fundamental characteristic of 

composite materials is the effective thermal conductivity; it is essen- 

tially reflective of the physical relationships between different phases 

of materials in a composite medium. In the case of a typical composite 

— graphite fibers in an epoxy binding matrix — the dispersion pattern, 

relative size, and density of fibers are the governing criteria that 

determine an effective conduction coefficient. Experimental effective 

thermal conductivities exist only for a very few composite materials, 
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and moreover, they are mostly for fabricated specimens of fixed compo- 

sitions. These ad hoc data, scattered and scanty, are difficult to 

organize and to relate to one another in order to form engineering 

correlations; the situation is not unlike that of the newly developed 

aluminum alloys decades ago when industry-wide standards were still in 

their formative stages. 

Coupled with the need for more reliable thermo-physical properties, 

consideration must be given to the types of analysis for examining 

thermal responses of composite materials in high-temperature environ- 

ments. Instead of an overview of the entire spectrum of the heat 

conduction phenomena, a narrower but pragmatic perspective of surviva- 

bility and vulnerability of composite materials in aerospace structure 

is adopted. From such a perspective, this report addresses two major 

problem areas which constitute two main critical tests for a composite 

material to survive; and they are undertaken in this report not as 

exhaustive accounts from an operational viewpoint, but as demonstrative 

studies for establishing the methodology of each. Results of the two 

case studies are discussed in terms of thermo-physical properties of the 

composites and their parametric relations with calculated temperature 

responses. From the calculated results, guidelines are established for 

an assessment of composites' ability to withstand the intended thermal 

environment. 

The first problem concerns the localized thermal heating of a panel 

by a cylindrical beam of irradiation. As composite materials in general 

are characterized by orthotropical conductivities, the analysis focuses 

on the effect of the in-plane thermal conductivity upon the heat 
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penetration pattern. The second problem deals with the temperature 

response of a multi-layer composite subjected to cyclic surface heating, 

which is a representative encounter for an orbiting space vehicle. Both 

problems are limited to their parametric performances of temperature 

responses, and their subsequent physical phenomena — melting or abla- 

tion in the first case and buckling with alternating thermal stresses in 

the second — are not discussed in this report. 

2.  AXIS-SYMMETRICAL SPOT-HEATING OF COMPOSITE SLABS 

Consider a slab with a thermal irradiation loading by a cylindrical 

beam of constant heat flux. The material of the slab is such that the 

thermal conductivity in the plane of the slab is isotropic but differs 

from the conductivity in the depth direction. Such a combination of 

thermal conductivities typifies composites with fibers oriented in the 

plane of the slab. Composites with fibers in overlay patterns of 0/90, 

0/145/90 all fall into this category. 

The slab is initially at a uniform temperature, arbitrarily taken 

to be zero, and as spot-heating proceeds, the temperature rise of the 

panel is to be determined. 

2.1 Analysis. Figure 1 depicts schematically the thermal system 

under consideration. Thermal irradiation is confined to a radius of a 

and is of intensity Q. Axis-symmetry is assumed and the heat diffusion 

equation together with its boundary conditions are: 
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„ 3T    ,  / 32T    1 3T\   .  32T 
pC —    = k  (   + - -5- ) + k   (i) 

3Q     r \3r2    r dT ' Z 3z2 U; 

-k 4^- - Q      atz-O,  r<a (2) 
3z 

3T 
3l " °      at z = 0, r >a; and at z = w (3) 

Except at the irradiation beam, all surfaces are insulated and the slab 

is considered infinite in the in-plane direction.  The characteristic 

parameters are a, w, Q and the thermal properties (PC), k , and k , all 

of which are needed to express the results in non-dimensional forms. 

The terms of the right-hand side of equation (1) represent of course the 

heat fluxes in the r and z-direction respectively, which lead to the 

following non-dimensional variables: 

r =  (r/a) JT/lT (4) 

z =  z/a 

6 =  (a 8/a2) 
z 

where a    is the thermal diffusivity and is given by 

a = k /(pc) 
z    z 

(5) 

(6) 

(7) 

The preceding transformations, particularly equations (4) and (5), 

indicate a scale change in the r-direction because of different thermal 

conductivities k and k .  By defining a non-dimensional temperature as 
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Tk 

the preceding equations are rendered non-dimensional as follows: 

_3T     3^T    1 _3T    32T 
_        —2  +  —   —  +   —2 
36     3r     r 3r    3z 

The boundary conditions become 

(9) 

il  =   -1 
37 

=  0, r < Ik /k \l z r 

—=0 z  =  0, r > /k /k (11) 
a! V z   r 

3T 
~ =  ° z  =  w/a (12) 
3z 

Initially, before heat flux at z = 0, the temperature is zero, or 

T =  0      9  =  0 (13) 

The different scale changes in the r and z directions are made necessary 

because of different thermal conductivities in these two directions. 

Solution of the preceding set of equations can, in principle, be ob- 

tained by a rigorous, exact approach, for example, by a Laplace trans- 

form in 9, a Fourier transform in z and a Hankel transform in r.  Such 

-6- 



an approach is conceptually satisfying; however, the inversion proce- 

dures necessary for computation may become so involved that the method 

is itself rendered impractical and moot.  Hence, in order to produce 

numerical results for making engineering judgements, the finite- 

difference approach is used and its implementation is described next. 

2.2 The Finite-Difference Solution. For diffusion problems, the 

simplest scheme is a combination of three-point central difference in 

space and one time-step marching using explicit algebra. It however 

suffers from the disadvantage of being unstable which can only be cured 

by using smaller time steps. Implicit schemes are known to be uncondi- 

tionally stable but requires the inversion of large matrixes. In 

one-dimensional problems, the matrixes are tri-diagonal; but in multi- 

dimensional ones, the matrixes are not so simple. And so far, no 

simple algorithms have been devised. 

Instead of the fully implicit and fully explicit method, a viable 

choice is the alternating-direction explicit method [1] which has a 

greater degree of stability and is therefore less time consuming than 

the explicit method. In addition, the necessary algebraic manipulation 

is much less involved than the implicit method, especially for multi- 

dimensional problems. 

Since the heat beam radius is a governing dimension of the problem, 

the size of a finite-difference grid begins at the heat spot.  Along its 

-7- 



* _ 
radius, 5 divisions are used.  The exact numerical value of  Ar 

is dependent, of course, on the relative magnitudes of k and k .  By 

definition r • (r/a)/k /k , hence from r • 0 to r = a there are five 

equal increments, each equal toAr = 0.2/k /k , with the ratio of the 

two conductivity values varying from one problem specification to 

another.  To attain equal accuracy in the z-directlon, equation (9) 

requires that Az =Ar.  In this way the mesh size is made flexible, 

depending on the relative magnitudes of the conductivities.  The total 

number of nodes in the z-direction is determined by the slab thickness 

(w/a). 

It should be mentioned that in the finite-difference algorithm use* 

for the two-dimensional problems, a single-Indexed temperature array is 

used.  Customarily, a double-indexed array is for keeping track of the 

nodal positions. However, owing to the undetermined numbers of modes in 

both directions, single-indexed arrays are better suited to the situa- 

tion; the node positions can be easily identified by the array index in 

question.  For example, if there are 20 nodes in z" and 500 in F, a 

single array of variables with index from 1 to 10000 is needed.  The 

same array can also be used for 500 nodes in z" and 20 in r.  A simple 

accounting of the index value serves to identify the node in question. 

In presenting the various finite-difference formulas, however, the 

usual two-index notations are used for simplicity and ease of dis- 

cussion. 

* The effects of using 10 divisions are documented in Appendix A 
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The Finite-Difference Formula for Regular Nodes.  A node located in 

the interior of the slab but not the axis of symmetry is termed regular 

node.  Using two-indexed notations, T   is the temperature at the node 

position identified by the two indexes.  On the exposed surface where 

heating occurs, i = 1 and on the axis of symmetry, j = 1; nodes on these 

locations are not regular nodes.  The finite-difference formula for 

regular nodes is based on a r-z mesh of equal increments as are for 

other nodes.  A five-point cluster of nodes is illustrated in Figure 2 

together with their definitions. 

According to the ADE method, the second-order derivative on the 

right of equation (9) is replaced by a time-splitting procedure.  Thus 

¥±    =       f(T -  T       )   -   (Tn       -  Tn       jl/A2 (14) 
a-a Lui,j+i    lt,y     V1i,j      i,j-r-l/ 

Superscript n denotes the nodal values at a later time step, or "new" 

values; otherwise, current values are meant.  The same increment of Ai7 

and  Az is denoted by a common symbol A.  Similarly, the following is 

also valid: 

C(Ti+l i " Ti i}  "  (^ •  "  ^ i -)]A2        (15) 3z 

The first-order derivative of equation (9) is given by a central- 

difference approximation, again using split-time values, 
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f =  (Ti,j+l - ^-iV• (16) 

*1    =  (T
n . - T  .)/6 (17) 

where 6 represents the time step 6=A9.  Incorporating these individual 

expressions into equation (9), the resulting formula for the calculation 

of T   .is given by 

+  («/A')[Tuj+1-I^._1]/7+Ili.[l-2(6/A^]] 

/[l + 2(6/A!)] (18) 

Elementary considerations of the stability question lead to a positive 

coefficient of T  . on the right of equation (18).  Thus the time step 6 
i» J 

is related to the space step A by 

6 <  (A2/2) (19) 

In fact, as shall be developed later, the time step 6  is taken to be 

6 = A2/2 (20) 

Even though the right-hand side of equation (18) contains nodal values 

at a new time, these are already known from the preceding calculations 

if the finite-difference computations are proceeding in the direction of 

increasing index numbers. 
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The Finite-Difference Formula for Central Nodes (f • 0).  For the 

nodes located on the axis of symmetry, where r = 0, equation (18) is not 

valid since it contains a factor of 1/r on its right-hand side.  The 

axis-symmetrical nature of the temperature distribution can be repre- 

sented by an algebraic expression, 

T = T + br2 (21) 

which satisfies the requirement 3T/8r = 0 at r = 0.  The temperature at 

r = 0 is denoted by T ; at r - A, the temperature denoted by T is 

related to the coefficient b in equation (21).  Equation (21) then 

becomes 

T = Tj + (T, - TjMr2//**) (22) 

which is valid for small values of r.  The r-derivatives of equation (9) 

can then be obtained from equation (22) and they become 

7! =  2<T2 " VA2 (23) 

I Ifl =  2(T - T )/A2 (24) 
r  3r 

Expressed in terms of two-indexed notations and using the split-time 

schedule, the sum of these two terms is given by 
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sg  • i a  . •<, 2 -,   if* 
dz       r  dr 

For the z-direction, the split-time scheme results in 

l!l    -    TT -  T -   (Tn       -  Tn       ,)1 A2 
77      LVi.i    Ti,i    ui.i    li-i,rJ/ 
dz 

(25) 

(26) 

From equations   (25)   and   (26),   the  finite-difference  formula  for central 

nodes  is 

"1,1 *     [«^)[T1+1§1 + Tj_M + 4T1-2]  + Tifltl -   («,*>,] 

Al + 5(6/A2)] (27) 

Stability considerations of equation (27) in calculating the new temper- 

ature lead to the criterion 

6  <  A2 (28) 

which makes the coefficient of T   of equation (27) positive. 
i»1 

The criteria of equations (19) and (28) are both required and 

obviously the former is more stringent; hence the time step 6  is 

governed by that of equation (20). 

The Finite-Difference Formula for Boundary Nodes.  The boundary 

condition at the slab top, z" = 0, is described through the first deriva- 

tives of the temperature by equation (10).  Starting from the top 
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surface, the z-index is i = 1, 2, etc.  The first derivative by a 

3-point formula is therefore 

— =  (4 T, . - T- . - 3T. .)/2A (29) 
9-       2,j   3,j    l,j 

For nodes located in the heating beam, r<a, equation (10) governs which 

raises the surface temperature T  . to a new high value in successive 

time steps.  By setting the derivative of equation (29) at -1 and 

replacing T  . by T   , a finite-difference formula for the new tempera- 
•l > J     i- »j 

ture is then established: 

TL • <* h,i  - h,i  + 2A)/3 (30) 

For nodes lying outside the irradiation beam, the condition of zero heat 

transfer results in 

Tn. , - (4 1, . - I, ,)/3 (31) 

2.3 Scope of Computations 

As this investigation is intended to exemplify and demonstrate the 

need of major areas of further research and to establish principal 

thermal criteria for composite application in aero-space structure, 

computational efforts were limited to the variations of a few major 

parameters so that conclusions can be drawn to pinpoint the future 

development of composite materials from a thermal protection viewpoint. 
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Accordingly, starting with the reference case of a panel with isotropic 

conductivity, i.e. k = k , two additional conductivity variations were J z    r 

analyzed:  they are (i) radial (in-plane) thermal conductivity four 

times as large as the transverse value, k = 4k , and (ii) k = 9k  as & r    z r    z 

the extreme case. Altogether, the conductivity ratios are 1, 4, and 9; 

these are considered adequate or at least representative of the expected 

variation. 

Another geometrical parameter is the ratio of the panel thickness w 

to the spot radius a. In the computational effort of this analysis, 

values of (w/a) of 1, 2, and 4 were taken. Hence altogether, there are 

nine combinations of conductivity ratios and panel thickness ratios. 

From these combinations of the parameters, computed temperature 

responses due to impulsive spot heating are examined to formulate 

performance criteria for composite materials serving as thermal barriers 

to surface irradiation. 

From a survivability and vulnerability standpoint, the criteria are 

temperature rise of the heating spot as heating proceeds, depth of heat 

penetration into the substrate, and back surface temperature rise. The 

temperature rises in conjunction with other relevant considerations — 

such as glass/transition temperature or melting temperature, localized 

buckling and de-lamination, — form the basis of selection and applica- 

tion of composite materials. 

2.4  Results and Discussion 

Spot-Surface Temperature Rise. The temperature rise at the center 

of the irradiation beam is the most important parameter of the thermal 
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response for judging how well a composite material endures a severe 

environment.  In general terms, high temperature as a result of external 

thermal loads engenders various damages which may lead to progress 

incapacitation of the aerospace structures:  possible damages include 

localized melting; structural buckling and fracture; layer delamination 

and crack initiative or enlargement; and, of course, thermal puncture 

due to mass removal.  Multitude of these damage mechanisms precludes a 

complete analysis of each; instead, emphasis is placed on the role of 

the in-plane thermal conductivity in affecting the temperature response 

due to a confined irradiation beam. 

Starting with the reference case of isotropic conductivity, i.e., 

k = k and for panels with thickness ratios of w/a = 1, 2, and 4, the 
r   z 

spot center temperature rises are shown in Figure 3. The back surface 

temperature rises are also indicated. The frontal spot surface tempera- 

tures are identified by "s" and the back center spot temperatures by "b" 

in Figure 3 with the numerals preceding s or b indicating the slab 

thickness ratio. 

An obvious trend of the temperature curves is that the magnitudes 

are mitigated by increased thickness from curve nos. Is, 2s, to As; 

temperature reduction is more pronounced for the back surface tempera- 

ture. These numerical values establish a reference with which other 

calculations can be compared. The reference performances in Figure 3 

also illustrate the thermal protection available by straight- 

forward thickening of thermal shields; in this case the additional 

panelty to reduce the front and back surface temperature rise is in 

direct proportion to the added thickness. 
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Figure 3.  Heat Spot and Back Temperatures for Isotropic 
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Figure 4.  Heat Spot Temperature Rises for Large In-Plane 
Thermal Conductivities, w/a = 1 
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Figure 5.  Heat Spot and Back Temperature Rises by Thermal 
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Figure 6.  Heat Spot and Back Temperature Rises by Thermal 
Shieldings, kr/kz = 9 
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It is significant to note that as heating proceeds, the front 

surface and the back surface temperatures tend toward a fixed differen- 

tial.  Pairs of curves, for example, Is, and lb, gradually become 

parallel to each other.  This phenomenon indicates that within the slab, 

the net heat flow occurs in the radial direction and is essentially 

spreading along the slab plane.  In the early part of the heating 

period, say  §< 1, the heat spot temperature rises are similar to those 

of an infinite half-space with an impulsive surface heat flux.  As 

heating proceeds, radial heat spread becomes effective and ultimately 

dominant in limiting the temperature change, as evidenced by the bending 

of the temperature curves. 

This observation of the temperature trends lends itself to the 

interpretation, and indeed, expectation, that composite panels with 

large in-plane thermal conductivities would promote rapid lateral 

temperature spread and thereby reduce the front and back surface temper- 

ature rises. 

To assess quantitatively the effect of large in-plane conductivity, 

additional computations are undertaken. 

For a slab with a thickness ratio of w/a • 1 and conductivity 

ratios of k /k = 1, 4, and 9, the computed temperature responses are 

grouped together in Figure 4.  It is readily apparent that the tempera- 

ture curves for k /k =4 and 9 show very early trends toward the r z J J 

phenomenon of asymptotic radial heat flow from the heat source of the 

irradiation beam.  The surface spot temperature rises are thus very much 

reduced compared to the case of k /k =1; moreover, the temperature-rise 

limiting feature by virtue of the higher in-plane conductivity is more 
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effective than simple thickening of the thermal shield of an isotropic 

material, as shown in Figure 3. 

To further bring out the relative performances, Figure 5 groups 

together the temperature calculations for k /k = 4 and slabs of thick- 

ness ratio of 1, 2 and 4. Figure 5 is a parallel to Figure 3; the 

latter is for k /k • 1.  Similarly, Figure 6 contains the temperature 

data for k /k =9 and the three thickness ratios.  The performance data 
r z r 

in these two figures demonstrate that large in-plane conductivities lead 

to an early (in time) asymptotic heat flow pattern of radial spread, 

thus reducing the front and back surface temperature rises.  Further 

reductions of the temperatures are possible with additional thermal 

shield thickening, but the return is diminishing for higher ratios of 

k /k . 
r z 

Asymptotic Trend of Temperature Variations. As shown by the 

preceding discussion, the heat spot temperature increases at first 

according to that of a semi-infinite medium with an impulsive heat flux 

across the entire surface. After a short time interval, the finite 

width of the slab and the limited heat beam radium begin to affect the 

temperature rise pattern: The pattern eventually becomes heat con- 

duction in a finite-thickness sheet with heat input on the internal 

boundary of a cylindrical surface. Such an asymptotic configuration is 

defined in Figure 7, showing an internal boundary of radius a equal to 

the heat-beam radius and a heat flux magnitude q . 

Such a heat flow problem has been analyzed and presented in [2]. 

For large times, the temperature rise at the heating boundary r = a is 

given by 
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2k T 
=  Log [4(a 9/a')] - 0.577 (32) 

ra 
aqr 

A significant conclusion of equation (32) is that at large times, 

the temperature rise varies according to the log of time 8 .  To test 

such a correlation, the temperature rises computed for all nine cases 

are grouped together and plotted vs. the log of the lapse time 9 . 

Since the principal variable in the case studies is the in-plane 

thermal conductivity k , and the non-dimensional temperature and time 

use k and a    as reference quantities in the ordinate and abscissa of 

Figure 8, in this way the relative magnitudes of f give a direct in- 

dication of the surface heat spot temperatures. 

To aid identification, these nine performance curves are numbered. 

The first set, nos. 1, 2, and 3, shows the temperature-time histories 

for the three slab thicknesses w/a = 1, 2 and 4, and k /k  =1; the next 
r  z    ' 

set, nos. 4, 5, and 6, is for k /k = 4 and the same thickness varia- 

tions; and the last set, nos, 7, 8, and 9, for k /k =9.  Having all 

nine cases together in a single graph again demonstrates the alleviation 

of the heat spot temperature rise by virtue of higher in-plane thermal 

conductivities, as contrasted to simple thicker thermal shields.  More 

important is the feature that for longer heating time  9 > 4, the semi- 

logrithmic plot in Figure 8 displays linear relations, thus essentially 

confirming the trend implicit in equation (32).  The fact that for each 

case shown in Figure 8, the slope of its asymptotic variation is 

different from the others can be reconciled by noting the left-hand side 

of equation (32) and the non-dimensional ordinate of Figure 8.  Equation 

(32) contains a radial heat flux q , as is indicated in Figure 7, 
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which is related to the surface heat flux Q in the irradiation beam by 

the following equivalence: 

•rra Q = 2 irawq 

If q is eliminated from equation (32) by using the above relation, 

equation (32) is converted to 

? 2 
(wk T /a Q)  = 0.25 Log (a 6/a ) + constant (33) 

r a e  z 

where T denotes the temperature of the slab at the beam edge r = a. 
3. 

The re-organized temperature parameter on the left-hand side of equation 

(33) is then used to correlate the calculated temperature rise at the 

heat spot center — but not the beam edge.  The resulting relations for 

the nine cases are shown in Figure 9, where a prominent feature is that 

the asymptotic slopes for these curves are nearly equal to 0.30, which 

results in an equation of the form, 

2 2 
(wk T /a Q)  = 0.30 Log  (a 6/a ) + constant n/t) r o e  z v  ' 

where T is the heat spot center temperature. 

Equations (33) and (34) differ from each other in the coefficients 

of 0.25 and 0.30, which are attributable to the different locations in 

the asymptotic equivalent configuration of Figure 7, where heating 

occurs at r = a and in Figure 9, where T at r = 0 is used.  Examination 

of the temperature profiles for the nine case studies indicates that 

there is a decline of the distribution from r = 0 to r = a with a ratio 
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of T /T = 1.25; in other words, if T is used in lieu of T in Figure 
o a a o 

9, the resulting slope would become 0.30/1.25 = 0.24, which is in 

excellent agreement with the asymptotic radial heat spread requirement. 

It should be emphasized that the matching of the asymptotic slopes 

with the simplified configuration of Figure 7 is not complete, for 

Figure 9 indicates that these variations still differ from one another 

by a constant term in equation (34); i.e., the curves are at different 

levels.  This must be attributed to the different combinations of 

(k /k ) and (w/a) in the finite-difference calculations; each one has a 
r z 

different temperature vs. time history in terms of heat storage, etc. 

before reaching their respective asymptotic states. 

A factor of significance is that if the temperature response of a 

composite panel is to be analyzed, calculations can be terminated at a 

time asymptotic radial heat spread becomes established, after which time 

a semi-logarithmic formula can be used for extrapolating the spot 

surface temperature to larger values for 8 . 

Isotherms and Heat Penetration Depths.  To further delineate the 

effect of the in-plane thermal conductivity, lines of constant tempera- 

ture extracted from the numerical results are presented.  Since there 

are a number of parametric variations in the cases analyzed, isothermal 

contours at 9= 10 only are considered.  The isotherms are identified in 

terms of fractions of the heat spot surface temperature;  this repre- 

sentation is necessary, for the individual temperatures of the heat spot 

surfaces are all different from each other. 

•24- 



Qr 

Figure 7.  Model of Constant Heating of an Infinite Medium 
Internally Bounded by a Cylindrical Surface 
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Figure 10.  Spot Heating Isothermal Contours at Various Conductivity 
Ratios, w/a = 1 

-28- 



Shown in Figure 10 are isothermal contours which define temperature 

rises corresponding to 0.8, 0.6, and 0.4 of the individual hot spot 

temperature rises for the cases of k /k =1,4, and 9; all for w/a = 1. 

For the case of k /k =1 shown in Part (a) of Figure 10, the tempera- 
r z 

ture contours beyond the heating beam radius of a are nearly transverse 

to the slab; this is of course indicative of near one-dimensional 

temperature distributions in which the distribution is asymptotic, 

gradually approaching that of Figure 7.  For larger in-plane thermal 

conductivities, k /k =4 and 9, temperature contours shown in Parts (b) 
r z 

and (c) of Figure 10 signify higher radial (in-plane) spread than in the 

depth direction.  Not only is the back surface temperature reduced by 

rapid heat dissipation near the heat-input surface, but more so is the 

temperature rise of the surface heat spot itself.  At heating time 9= 

10, for which Figure 10 is valid, the spot-center temperatures for the 

three conductivity ratios are 1.49, 0.68 and 0.45, respectively.  This 

observation is most significant when the criterion of burn-through of 

thermal shields is considered. 

Similar to the contours in Figure 10, the cases of w/a = 4 and 

k /V.n  = 1 and 9 are displayed in Figures 11 and 12.  For isotropic 
r z 

conductivity, the contours (Figure 11) at 9 = 10 are very nearly circu- 

lar (spherical in reality), as would be expected; in contrast, for k /k 

= 9, temperature rises are concentrated near the heat source but spread 

appreciably along the plane, resulting in contours of flat ellipses. 

Another feature of significance is the profile of the slab tempera- 

ture on the heat input surface ~z  = 0; Figures 13 and 14 show the lateral 
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temperature variations for k /k = 1 and 9, each with w/a = 1 and 4, 
r  z 

respectively, in these two illustrations.  As in the case of the 

isothermal contours, the temperature profiles are presented in terms of 

their ratios to the temperature of the heat spot center.  In spite of 

wide variations of the parameters (w/a) from 1 to 4 and the conductivity 

ratio (k /k ) from 1 to 9, the surface temperature profiles are re- 

markably similar to each other: a very nearly flat region within the 

beam radius and sharp drop from the beam edge outward.  It is parti- 

cularly worth noting that the temperature at the beam edge is approxi- 

mately 0.8 of the temperature at beam center and the temperature ratio 

is reduced to 0.3 at a distance of two radii from the center.  The 

former relation is used in correlating the surface temperature rise with 

the asymptotic heat flow configuration of Figure 7 and equation (34). 

2.5  Summary and Recommendations 

At the end of 0 = 10, the heat beam center temperatures and the 

back temperatures for the nine combinations of parameters are listed in 

Table I.  Starting with the case of k /k =1 and w/a = 1, the heat beam 
r z 

spot temperature is reduced from 1.49 to 1.015 by increasing the thick- 

ness to w/a = 4.  However, a greater reduction of the surface tempera- 

ture can be achieved by increasing the in-plane thermal conductivity: 

By using k /k =4 and 9, the surface temperature becomes 0.682 and 

0.450 respectively.  This observation demonstrates the need for compos- 

ites with larger in-plane thermal conductivities than the transverse 

values. 
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Aside from concluding that the in-plane thermal conductivities of 

composite labs have a predominant influence on the thermal responses in 

general, this investigation also demonstrates other typical analyses 

among many needed for a survivability and vulnerability evaluation ol 

protective materials. The types of investigations needed can be, 

broadly speaking, classified into (i) short-term damages characterized 

by imminent incapacitation, such as burn-through melting, large-deformation 

buckling and fracture and (ii) long-term cumulative damages, such as 

thermally-induced stress concentration around voids, cracks, and delin- 

eation of layers, etc. Indeed, the analysis of spot-heating treating in 

this report — even though limited to the temperature effect along — 

belongs to the first category, for if the heating process continues, 

burn-through or pit-forming is the next stage of occurrence. 
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Table I.  Calculated Heat Spot and Back Temperatures* 

(6= 10) 

(kr/kz) w/a =   1 w/a =  2 w/a =  4 

1 1.495 

1.026 

1.121 

0.395 

1.015 

0.107 

4 0.682 

0.305 

0.578 

0.106 

0.550 

0.028 

9 

.... — 

0.450 

0.142 

0.402 

0.048 

0.388 

0.009 

*  The top and bottom figures indicate the frontal and back surface 

temperatures respectively; the temperature is defined by 

T = k T/aQ. 
z 
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3.  TRANSIENT HEAT FLOW IN MULTI-LAYERED COMPOSITES 

Aside from the axis-symmetrical spot-heating problem analyzed and 

discussed in the preceding section, one-dimensional transient heating of 

multi-layered composites constitutes a fundamental class of problems — 

not necessarily from the viewpoint of its novelty or difficulty — but 

from the viewpoint of providing realistic temperature distributions 

throughout the composite bulk so that the resultant thermal stresses can 

be calculated based on more realistic thermal analyses. 

The first problem of transient conduction analyzed in this part of 

the report is the heating by a constant heat flux of a multi-layered 

composite panel. From a vulnerability standpoint, assessment of compos- 

ites used in space structure must, by necessity, involve the constant 

heat flux criterion in order to establish the temperature excursion 

which a candidate composite structure may undergo. In this connection, 

relevant parameters are the heat flux intensity, its duration, and the 

thermal properties of the composite materials. The temperature re- 

sponses derived therefrom constitute the input to the next phase of 

annlysis for the resulting thermal stresses and possible deformation, 

buckling, etc., which are based on known material thermoelastic prop- 

erties and the geometrical specification of the space structural shape. 

The second problem discussed in this section pertains to the 

periodic heating and cooling which comes about, for example, in an 

orbiting space structure. During a portion of its cycle, solar irra- 

diation raises the exposed surface temperature and during its stay in 

the shadow, the surface temperature lowers.  The cyclic surface 
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temperature fluctuation is a direct consequence of the fluctuating 

surface heat flux about its cyclic average value. Such a periodic heat 

flux variation and surface temperature excursion are of course mutually 

convertible and can be expressed by a Fourier series whose basic period 

is the orbiting time, with higher harmonics taking into account irreg- 

ularities from a sine-wave representation. 

The development herein focuses more on the methodology which is 

heretofore unavailable than on the complex parameters involved in an 

orbiting event. From an application viewpoint, the method of analysis 

easily accessible in this report makes the cyclic temperature analysis 

possible for composites with any number of layers. Given the relevant 

parameters of the heat flux intensity, etc., the computed temperature 

fluctuations throughout the body of the composite naturally lead to more 

realistic determinations of internal thermal stresses and strains. 

3.1  Impulsive Surface Heat Flux 

Even though the development is applicable to composite panels 

composed of any number of layers, the mathematical development and 

numerical presentation are limited to a two-layer configuration for 

simplicity and compactness. Figure 15 depicts an inner layer, substrate 

s or layer number 1, protected by an outer layer, coating c or layer 

number 2, which acts as a thermal shield. With c and s as subscripts, 

the governing diffusion equations in these two regions are 
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c       ,_„* c 
kc 7T = (pc)c IT <35> 

dx' 

32T dT 
ks TT = (pc)

s ir <36> 
dx 

At the exposed surface, a constant heat flux Q is imposed impulsively 

on the composite panel, which has an initial temperature of zero every- 

where.  On the back surface of the substrate region, an insulated 

boundary condition is assumed.  Between the two regions, the conditions 

of equal temperatures and equal heat fluxes are naturally valid. 

Altogether, these boundary conditions are 

(37) 
dT 

a S = 0 9x 
(x =  0) 

3T 
k   T"5, = Q C   dx 

(x =  Lt) 

T        =      T 
s                 C (x =   L  ) 

S 

3T                 8T 
i           s  -  i           c 

S    dX                C    dx 
(x =  Ls) 

(38) 

(39) 

(40) 

By using non-dimensional variables defined by, 
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x    =    x/L. 

6 =  a 6/L 
s       t 

*s • ksV(0V 

T    =  k T   /(QL  ) 
c s   c t 

L    =     L/L s st 

(41) 

the governing equations and their associated boundary conditions become: 

9ZT   9T 
s    s 

9x2   36 (42) 

a 9ZT   9T 
c   c    c 

as 9x2   99 
(43) 

9T 
 s 

9x 

k 3T 
c  c 

k   s- 
S dx 

= 0 

= 1 

(x = 0) 

(x = 1) 

(44) 

(45) 

T  = T 
s   c 

(x = Lg) (46) 

3T   k  9T 
s   c  c 

9x    s 9x 
(x = Ls) (47) 

The group of equations (42) through (47) indicates that the transient 

solutions of T and T are dependent upon two parameters:  the ratio of 

the diffusivities (a /a  ) and the ratio of the conductivities (k /k ). 
c s c  s 
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Finite-Difference Formulation.  Numerical solution of equations 

(42) through (47) is most conveniently accomplished by a one time-step 

forward marching process in conjunction with 3-point space derivatives. 

Although the problem can be solved analytically, the resulting formu- 

lation in terms of segmental eigenfunctions becomes too unwieldy to 

handle.  Numerical treatment appears to be the most expedient approach. 

As in the case of the spot-heating problem, the ADE-method (time-splitting) 

is used to insure speed and accuracy.  Based on a uniform grid size of 

Ax, the time step for satisfying numerical stability is governed by the 

following: 

A6 <  (Ax)2(as/ac) (48) 

A6 < (Ax)2 (49) 

which are equivalent to the Neuman's stability formulation for each 

region. 

In the computations carried out in this analysis, the minimum time 

deduced from these two criteria is further reduced by one half to insure 

accuracy.  The space grid size Ax is determined by requiring the thinner 

layer of the two to have a minimum of 10 divisions.  The use of the 

subscripts c and s is dropped, for the different regions can be distin- 

guished by referring to the index of the temperature node in the arrayed 

notations.  By using the ADE-method, which is in essence a split-time 

technique, equations (42) and (43) are replaced by a single finite-difference 

formula: 
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Figure 15.  Two-Layer Composite Configuration and Definitions 
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XT   + T.    + (1 - A)T. 
Tn =  itl izi i_ (50) 
i (1 + X) V ' 

where: 

i = index number of the node (i = 1, heating surface) 

X. = (a la  ) A6/(Ax)2, in c-region 
c s 

^ = A0/(Ax)2, in s-region 

and subscript n denotes the value at a later time-step.  The node index 

i starts from the heating surface x = 1, i = 1 and increases towards the 

insulation surface of x = 0. 

The heating boundary condition at x - 1 (i=l) is expressed, through 

a three-point differentiation approximation, by 

T"  =  [4T2 - T3 + 2(Ai)(kg/kc)]/3 (51) 

The interfacial boundary condition is similarly obtained as 

Tn [(4T7   -T8)(Vkc)  +   (4T5  -  T4)] (52) 
6 [3+3(ks/kc)] 

where the node numbers are sequential from right to left with node 

number 6 at the interface. The use of these numerals is of course 

illustrative only.  Again the superscripted quantities denote values at 
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a later time-step, but they become known in the forward sweep algorithm. 

Using the same strategy, the end temperature at it = 0 is calculated by: 

T^ =  [4T£ - Tj]/3 (53) 

where node number 6 is used simply to illustrate the end point. 

Results and Discussion.  The calculated results are expressed in 

terms of T and T at the nodal points as time proceeds.  Of these, the 
C S 

most significant are at the front, interface and back positions, i.e., 

x = 1, x = L , and x = 0.  From a phenomenological viewpoint, all 
s 

temperatures increase with time and eventually become linearly dependent 

upon it.  However, for the purpose of analyzing various coatings in 

protecting the substrate layer, the relative magnitudes of the substrate 

temperatures at a fixed heating rate Q for a fixed duration 9 become an 

important criterion in coating selection. 

In the numerical computations undertaken, values of the coating 

thermal conductivity relative to that of the substrate layer are assumed 

as 0.2, 0.5 and 1.  These are low-conductivity coatings used as thermal 

insulators.  For the first set of calculations, the product (pC) of the 

coating is made equal to that of the substrate layer.  The relative 

effectiveness of the coatings can therefore be judged by examining the 

temperature rises of the substrate temperatures at it • L and at it » 0, 

The coating thickness is taken to be 0.25 of the substrate thickness. 

Results of this set of calculations are shown in Figure 16, where the 

temperature rises of the substrate surface temperatures at it « L are 
s 

grouped together for coatings of conductivity ratios of 0.2 and 0.5 and 
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1.  The closeness of the distribution curves suggests that coatings with 

low thermal conductivities are only mildly effective in protecting the 

substrate surface.  The reason is, of course, that in the case of a 

constant heat flux the coating surface temperature rises were steep when 

its conductivity is low and vice versa; the end result is that at the 

interface with the substrate, the temperature changes with time are not 

materially different for conductivity ratios of 0.2 to 1.  The preceding 

observation is not valid if the heating environment is that of con- 

vection. 

Another set of calculations was carried out with the coating 

conductivity equal to that of the substrate but with their thermal 

capacity (pC) ratios of 1, 1.5, 2, and 4. Results of varying the thermal 

capacity ratio indicate that the surface temperature of the substrate is 

substantially reduced by using coatings with high (pC) values and the 

effect is much more pronounced than it is when using coatings of lower 

thermal conductivities. 

Figure 17 displays the front surface temperatures of the substrate 

with coatings of various thermal capacity ratios.  The back surface 

temperature variations with time are shown in Figure 18.  Notable 

differences among these response curves are maintained along the time 

scale, contrary to those in Figure 16.  Hence coatings with high rela- 

tive (to substrate) values of (PC) are much more effective than coatings 

of low k-values.  Of course, combinations of the two factors enhance the 

effectiveness of protection.  Thus in relation to the substrate prop- 

erties, coatings with thermal diffusivities lower than the substrates' 

are preferred thermal shields. 
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3.2 Cyclic Surface Temperature 

A space structural component, when subjected to a cyclic surface 

temperature, may exhibit little internal temperature variation while the 

internal temperature level follows almost in parallel with the imposed 

surface temperature fluctuation. This occurs when the surface tempera- 

ture cycle is long and the internal heat flow resistance is low. Tt 

follows naturally that when the surface variation is rapid in its 

fluctuation coupled with large internal thermal resistance, there would 

be considerable internal temperature variation throughout its bulk with 

larger temperature excursions near the heating surface. In the above 

description, heating by cyclic surface temperature variation or by 

cyclic surface heat flux is considered identical, for one situation can 

be readily converted into the other by the spatial gradient of the 

former case. 

The governing criterion for these two extremes is the two relative 

time scales: the physical cyclic time and the thermal diffusion time; 

the former stems from the imposed boundary condition and the latter is 

an intrinsic property of the material medium. Compounding the situation 

is, of course, the multi-layer nature of a composite, which makes the 

analysis complicated. From a technical viewpoint, the problem may be 

stated as follows: given a surface temperature cycle history, determine 

the steady-state cyclic temperature variation of a multi-layered compos- 

ite for which thermal properties are known a priori.  Answers to this 
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question are of significance in determining the cyclic thermal growth of 

composites and sequentially the thermal fatigue stress a component may 

experience. 

It turns out that numerical analysis by the finite-difference or 

finite-element method is not the approach to use, for the focus is on 

the steady-state cyclic temperature responses.  By numerical methods, 

solutions would not be forthcoming until the temperature cycle becomes 

periodic and repeating.  In principle it is possible; in practice it is 

not feasible to implement for all kinds of combinations of problem 

specifications.  Thus analytical tools are resorted to. 

Analysis.  Consider a multi-layered composite depicted in Figure 

19.  Starting from x = 0, the layers are numbered 1 to n, each having 

thermal properties distinct from other layers.  At the last layer (layer 

n), the exposed surface has a boundary condition described by a cyclic 

temperature fluctuation about a mean value.  The cyclic part may be 

expressed by 

r8 • z 
CO 

•      A    cosui 9    +    B     sinw 6 (5^) 
^L mm m m J 

Since constant (independent of temperature) thermal physical properties 

are assumed, the entire problem is a linear one.  Hence in equation (54), 

only a representative term needs to be considered; accordingly, a 

typical term is detached from equation (54) and is taken as the boundary 

condition at x = L .  The conditions of equal temperatures and heat 

fluxes naturally apply at the interfacial positions. 
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Denoting the temperature responses (from a mean value) as T , T , 

... T for these layers, the individual diffusion equations can be 

expressed by an indexed notation as 

92T.   .  3T. 
 1 = 1 1 (55) 
2 2   a. 36 3x     i 

for j = 1, ... n.  Using the total thickness L as the reference length 

and the physical properties of the first layer (1) as reference, the 

following non-dimensional variables are defined: 

x  =  (x/L ) 
n 

(56) 

e =   («.e/L 2) 1  n 

The governing equations for each layer become 

32T.  a, 3T. 

-ZT1-^^- (57) 
3x     j 36 

The interfacial positions are defined by 

x -  Lj, L2 ... Ln_L 

with L = 1 for the exposed surface, at which the temperature of the 

last layer is specified by 
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T ,- n(x=l) = A cos W0 + B sin u>6" (58) 

or 

Tn(x=l)  =  (A/2)(ei_We + e"^
6) - (iB/2) (e^9  -e^9)       (59) 

(Note that the surface temperature variation in equation (58) has been 

expressed in terms of the non-dimensional diffusion time 8 with a 

corresponding change of u to OJ which will be discussed later.)  To 

determine the periodic solution for the j-th layer between x = L   to 

x = L., a reference solution is obtained which satisfies the surface 

temperature fluctuation (A/2)e   .  Let this solution be called 

A-solution; then the complete solution of the j-th layer due to A cosuS 

is the A-solution plus its complex conjugate.  To obtain the solution 

due to B sincaG , the reference A-solution is changed, (by replacing A 

by -iB) into B-solution.  The complete solution due to the surface 

temperature B sin w8  is therefore B-solution minus its complex conju- 

gate. 

A-Solution.  To obtain the solution T., for the j-th layer, consider 

the substitution 

T       -   I  A /ON  i^Q   3-iX 
Vj  -  (A/2)e   e J (60) 

which upon substitution into equation (57) gives the exponential con- 

stant 6. as v2 
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Figure 19.  Multi-Layer Panel Configuration and Definitions 
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3. =/(«1/a.)(uj/2)
,(l+i) (61> 

For the first layer whose inner surface at x = 0 is insulated against 

he.it conduction, equation (60) can be written as 

T
A_1 

= (A/2)elUj6 [G! cosh 3j_x] (62) 

where C is a complex constant. Note that equation (62) already sat- 

isfies the zero-gradient requirement at x = 0. For layers from no. 2 

on, the solutions can be expressed by 

T   = (A/2)elw6fG. cosh3.(x - L. ,) + H. sinhS.(x - L. ,)1 
Lj ^    J     J     J"lJ  (63) 

j > 2 

The functional form in equation (63) differs from the more elementary 

form of equation (60) for the reason that equation (57) permits simple 

deduction of the coefficients G and H..  Noting that equation (63) 

applies for x between L   and L., the starting value of the terms 

inside the brackets is simply G. which therefore equals the end value of 

the preceding layer no. (j-1).  In addition, since the first term of 

equation (63) has its gradient zero at the starting position x = L. ., 

the second term has a gradient of H.(3. which must therefore be related 

to the gradient of the preceding solution at its end-point.  In this way 

the calculation procedure can be made sequential and simple in its 

algorithm.  By proceding from the inner most layer 1 to the outermost 

layer n, the coefficients G. and H. can be easily determined in terms 
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of their ratios to the first coefficients G .  At the surface position x 

= 1, where the surface temperature (A/2)e   must he satisfied, the 

equation determining the first constant G then becomes 

Gi[(a7)"sh 6„<1-v1> +(^) ^ B„ (i -rnJ 
(64) 

where the ratios (G /G,) and (H /Gn) are known, having been determined n  1       n  1 

by proceeding from layer to layer. 

The A-solution for the (A/2)e  -surface temperature perturbation 

is therefore embedded in equation (63), which contains complex coeffi- 

cients G. and H for the j-th layer of the composite.  Expressing the 

solution in the form of 

T.    =  (A/2)e1^ [R. +1T ] (65) 

where R. and I are respectively the real and imaginary parts of the 

complex function in equation (63), equation (65) can be expressed in a 

more elementary form: 

T   = -|~(R  cos a)0 - I. sinu)6)+ i (R.sinw9 + I. cosa)6)|      (66> 
A-j   2 L j J J        3 J 

'Ihe complete solution due to a surface temperature fluctuation of A 

cosu)9 is therefore the sum of T   plus its complex conjugate, and is 

consequently 

TA  =  A TR. costuG - I. sinaJel (67) 
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where j is the layer number.  Again, R and I  are the real and imagi- 

nary parts of the G- and H-terms in equation (63). 

B-Solution.  To the surface temperature variation B sinwG , there 

is a corresponding temperature response for each layer.  By virtue of 

equation (59), the temperature response to (-iB/2)e   is simply the 

i'jjG 
response to (A/2)e   if A is replaced by (-iB).  This is the 

B-Solution. Using equation (66) as the model, the B-Solution can be 

expressed by 

T [(R cosu)6 - I  sinu)9 )+i(R. sinu)6 + I  cosw6)l 
J J J j      yJ 

Finding its complex conjugate and subtracting it from T  . gives the 

temperature response function T for the j-th layer as 

TD  =  B[R. sin o)6 +  I. cos LO6] (69) B       J J 

Solution for Two-Layer Composites.  For a composite panel consist- 

ing of two layers, the solution is not unduly complicated and can be 

obtained by using equation (62) and equation (63) with j » n • 2.  At 

the interfacial position, x = L , T   = T  .  Therefore, 
I   A*-1    A~ £. 

(G2/G1) -  cosh 6^ (70) 

The equal heat flux condition at x = L , becomes 
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OW " k^sinhB2Li <71> 

Introducing G /G and H /G into equation (63) for j • 2 and setting 

x = 1, an expression for the fluctuating outer surface temperature is 

obtained.  The required boundary condition is met by setting 

G1[(G2/G1) cosh $2(1 - L ) + (H2/G1) sinh B2(l - 1^)] = 1 (72) 

The first complex coefficient (3. along with G„ and H„, is therefore 

determined.  With the coefficients known, the temperature fluctuation 

can be separated into R and I parts in the region occupied by each 

layer.  The complete expressions for layers 1 and 2 are therefore: 

T ,  -  (A/2)eiwG  [cosh 3,x]G. (73) 
A-l -L   *- 

TA-2     =     (A/2)ela)     [cosh  3lLl  cosh  62   (X  "  V 

/ VlCl - -      -   1 
H- / i sinh     31L1   sinh  6_(x -  L.)   3. 

(74) 

where G is given by equation (72). 

Diffusivity-Cycle Frequency c3 and Computational Results. 

In the specification of surface temperature variation with time, a 

circular frequency w is used in conjunction with 0, as in equation (54). 

In non-dimensional coordinates, however, diffusivity-referenced time 
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is used, as defined by equation (56), which necessitates the use of a 

non-dimensional frequency ui •  Its definition can be established by 

considering the identity u)8=w9  ; hence 

2 
(0 =  UJL A 

Since in the physical coordinates, the circular frequency w is related 

to the fundamental period P by u= 2TT/P, the non-dimensional diffusion-cycle 

frequency <L is given by 

uJ = 2-nL2/ix p <75) 

which becomes a key parameter in the analysis of periodic temperature 

responses of composites. 

Its approximate magnitude in a typical structural application can 

be established by considering a low earth orbit with a typical orbiting 

period of 5400 seconds [3].  Used in such a space structure is, say, a 

one-inch thick graphite-epoxy composite, whose thermal diffusivity is 

taken approximately as a = 3x10  ft2/sec [4].  With these numerical 

values,   w = 2.7 is obtained, thus establishing the range used in this 

analysis. 

Mrst, for the sake of demonstrating the methodology and procedure 

developed, the case of a 4-layer composite is considered.  All layers 

are of equal thickness but have thermal conductivities in the ratios of 

1, 2, 4, and 8, beginning with the inner layer.  Their thermal diffusivities 

are taken to be equal.  Figure 20 shows the calculated responses for the 

diffusion-cycle frequency w from 1 to 256.  Finite slope changes are 

clearly indicated in Figure 20.  A general conclusion from Figure 20 is 
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that at high frequencies, or at high harmonics of a low-frequency 

fluctuation, thermal effects are confined to a thin layer near the 

surface.  The frequency-dependent nature of these distributions demon- 

strates the significance of the diffusivity-cycle parameter w. 

Computed values which made up Figure 20 are found to be most 

conveniently analyzed by the sequential method developed.  If, instead, 

a direct analytical approach is used, the necessary algebra manipu- 

lations may become very prohibitive. 

Results for 2-Layer Composites (Cyclic Surface Temperature) 

Parallel to the computed results for the case of impulsive surface 

heating of two-layered composites, representative calculations for 

cyclic surface temperatures were made.  The outer layer (coating) is 

taken to be 0.2 of the overall thickness.  The first set of calculations 

is for reference only, with the outer layer identical to the inner. For 

the next set of calculations, the outer layer is assigned a larger 

thermal capacity pC than the inner-layer value by a factor in order to 

ascertain the influence of thermal inertia of the outer shield.  Subse- 

quently, a third series of calculations was made with the outer layer 

having the same thermal inertia but with lower conductivities of 0.2 and 

0.1 of the substrate layer.  For all the computations cited, the 

diffusivity-cycle frequency to takes on the values of 1, 3, 6, 10 and 20, 

thus covering an expected span of variation. 

Figure 21 shows the reference responses — in reality for a single 

layer composite. The in-phase responses are indicated by the R-curves; 

and the out-of-phase responses, indicated by the I-curves, are 90° out 
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of phase of the cyclic surface temperature variations. The I-responses 

therefore represent travelling thermal waves or pulses. Formation of 

the complete responses is supplied by equation (67) or (69), which 

combines R and I together. Data in Figure 21 suggest a demarcation 

criterion of <o • 1. Below this value, the internal temperature varia- 

tions are insignificant and the entire bulk may be treated as a single 

lump whose average temperature rises or falls in phase with the imposed 

surface temperture cycles. The out-of-phase waves are not insignificant 

to be ignored; for example, at o>= 1, the back surface temperature 

varies at 0.8 of the surface temperature excursion for the in-phase 

variation; however, the out-of-phase variation has a value of 0.4 of the 

surface cyclic magnitude. Interpreting these temperature responses in 

terms of the resulting thermal stresses, the near uniform distributions 

of the in-phase curves (R) indicate that the bulk stresses rise or fall 

with the surface temperature fluctuations but with only ± 10 per vari- 

ances across the composite panels. Non-uniform temperature variations 

and the attendant thermal stress variations lead naturally to thermal 

moments and consequently bending or bowing of the panels. For the 

out-of-phase responses, the I-curves, there is a greater degree of 

non-uniformity of the temperature distribution, ranging from zero at the 

heating surface to -0.5 at the back surface. Hence, the thermal bending 

moments in the low-frequency cases may be due mainly to the shifted 

temperature responses. 

As the surface temperature fluctuation goes above the critical 

value of co= 1, the alternating temperature affect appears to be more 

confined in a thin surface layer, with the remainder of the panel less 
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affected.  Hence, for high-frequency heating, damages, if any, are 

confined to the near surface region. 

By taking the outer coat layer with 0.2 of the overall thickness 

and having a thermal capacity four times as large as the inner layer, 

the temperature responses were calculated and are shown in Figure 22. 

The effect of larger (pC)-values for the coat-layer is to have reservoir- 

like influence on the inner layer; the coat layer therefore alternately 

stores up the in-coming heat flux and gives out what has been stored 

before.  In cyclic events, having a coat layer with a large 

thermal capacity is not very influential, as compared with its effect in 

impulsive heating analyzed previously where heat flow is not alternat- 

ing.  The data in Figure 22 demonstrate that although there is for both 

in-phase and out-of-phase a shift of the response curves towards the 

heating surface, the change is not materially significant from the 

curves in Figure 21 for a single-medium composite. 

When, however, the outer layer has a lower thermal conductivity 

than the inner layer, thermal shielding thus afforded does substantially 

reduce the in-phase temperature fluctuation in the inner layer; but less 

so for the out-of-phase fluctuations.  Data in Figures 23 and 24 demon- 

strate respectively these phenomena when the outer layer has a thermal 

conductivity equal to 0.2 and 0.1 of that of the inner layer.  Particu- 

larly for high-frequency heating w = 3 or above, the in-phase responses 

are nearly suppressed in the inner layer. 

It is recalled that in the case of impulsive heat load when the 

heat flow direction is not alternating, low-conductivity thermal shields 

lead to very little change in the inner layer's temperature-time 
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history.  For alternating heat flow, however, this type of shielding 

becomes particularly effective. 

3.3 Cyclic Surface Heat Flux 

Having obtained composite panel's responses to cyclic surface 

temperature variations, the analogous problem with periodic surface heat 

fluxes is a direct extension of the methodology established previously. 

Again, a Fourier series may be used to describe the surface heat flux of 

which a Fourier component may be represented by 

q =  qA cos uo9 + q_ sin u)9 (7 6) 
^      A n 

Equation (76) is analogous to equation (54) for periodic surface temper- 

ature variations.  The analytical developments are also parallel with 

the previous case, up to equation (57).  However, the boundary condition 

at the heating surface is, instead of equation (59), given by 

k (9T /3x) = qA cos w9 + q  sin ^9 (77) 
n  n       A o 

Since the heat flux terms can be expressed by the following exponential 

terms 

,  ,_w iu)9    -iw9 .   ..  .... iu)9    -ia)9.      ,,Qs q =  (qA/2)(e    + e    ) - (iqB/2)(e    - e   )      (78) 

the complete solution is made of individual solutions, each satisfying 

an individual heat flux component term in equation (78).  To obtain the 

individual solutions, a non-dimensional temperature is defined by 
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TA " (klVLn«A> (79) 

where k is the thermal conductivity of the first layer, L is the total 

thickness, and q, is the heat flux Fourier coefficient.  For the first 
A 

tern of the four in equation (78), the solution (A-Solution) is assumed 

to have the following form for the j-th layer in the composite: 

T
A-j " <1/2)e    e (80) 

The exponent, (3. is defined by equation (61).  For the first layer, the 

solution, analogous to equation (62), is expressed by 

TA_1 =  (l/2)eiaj6 [GI  cosh 6lX] (81) 

and, for other layers, by 

T
A-j  

=  (l/2)e1C'b|Gj cosh 3j(x-Lj_1) + H  sinh g. (x-L.^)]   (82) 

At the heating surface, x = 1, the heat flux is to satisfy the first 

term of equation (71); and by using equation (75), the boundary condi- 

tion becomes 

3nGl(kn/kl) r<Gn/G )sinh 6 (1-L  ) + (H /G.) cosh 3 U-L  .)1 = 1 n x n  x L  n  1      n   n-1     n  1       n   n-1 J 

(83) 
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Figure 20. Temperature Functions of a 4-Layered Composite Due to 

Periodic Surface Temperature Variation 
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Figure 21, Temperature Responses of a Single-Layer Composite by 
Periodic Surface Temperature Variation 
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Figure 22.  Temperature Responses of a Two-Layer Composite by 

Periodic Surface Temperature Variation, (p;:) /(pC) 
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Figure 23.  Temperature Responses of a Two-Layer Composite by 

Periodic Surface Variation, k /k =0.2 
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Figure 24.  Temperature Responses of a Two-Layer Composite by Periodic 

Surface Temperature Variation, k /k =0.1 
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The procedure of obtaining the coefficients G's and H's is identical to 

that used previously for the problem with a specified surface tempera- 

ture fluctuation.  Equation (83) is used to obtain G., instead of 

equation (65). 

With the A-solutlon thus obtained — defined by equations (81) 

through (83) — which satisfies the heat flux boundary condition de- 

scribed by the first of the four terms on the right of equation (78), 

the complete solution for the surface heat flux q. coswG  can be 

constructed by a procedure similar to that for the cyclic surface 

temperature case, treated in 3.2. 

To be more specific, the real and imaginary parts of the terms 

inside the brackets of equation (82) are expressed by the following: 

G. cosh 3.(x - L. n) + H. sinh 3 (x - L  ,) 

R. + 11, <84) 
J    3 

Then the complete temperature response to the surface heat flux fluc- 

tuation of q  cosw9  is given by 

T i n  =  (kiTA |/L„0  =  R- cos we " !• sin w6> (85) v-j      i A-j  n A      j j 

Similarly, the complete temperature response to the surface flux 

q  sinuB is 

T„ .  =  (k,T  ,/L q ) = R. sin w9 + I. cos u)6 (86) 
B-j       1 B-j  n^B    j j 

In both equations (85) and (86), the layer index j varies from 1 through 
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n.  An apparent structure of the solution is that R. is the in-phase 

(with heat flux) part and I the out-of-phase part. 

Low Frequency Analysis.  Before discussing numerical results it is 

important to point out that the out-of-phase response I is where heat 

storage occurs and the in-phase response R. is that profile through 

which heat conduction occurs.  To demonstrate this fact, consider a 

single-layer composite.  The response to q cos 009 is the following: 

TA_1 * (klTA-l/LlqA) = Rl COS w9 " II sin ue (87) 

where R and 11 are derived from equation (81) and are expressed by 

R: + iIL  =  cosh Bjx/ f'61 sinh $1 (88) 

The complex coefficient (3. is (i+l)JuJ/2.  The respective roles played by 

R. and I1 in equation (87) can be made clear by referring to the dif- 

fusion equation (57) for the layer.  Integrating the diffusion equation 

from x" = 0 to x = 1, where a prescribed heat flux of q cosu9  occurs 

and using equation (87) for the temperature response, the integrated 

form becomes 

c 1 /*1 
— cosu)6/  Rdx - sincoe/  Tdx = cosw6 (89) 
d0L   J0      l JQ       1 J 

The right-hand side of equation (89) is the surface heat flux term; thus 

equation (89) shows that heat flux is accumulated in the I -term and 
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correspondingly the boundary condition of heat flux at x" = 1 is sat- 

isfied via the R -term. 

Because of the above examination of the terms' composition, it is 

of importance to note that if the cyclic heat flux condition is such that 

heating or cooling takes place over a long period of time, i.e., OJ -» 0 

or (3 -*0, then the heat accumulation terms I's tend to be large since 

there is more time to pile up.  To substantiate that, the one-term 

solution of equation (88) can be decomposed into its real and imaginary 

parts:  Since p is a complex constant, asymptotically small values ofP 

or u> lead to the following series expansion in terms of co as the 

parameter: 

cosh Bx 
6 sinhB = (f " i) " i U^ + •'• (90) 

Thus the imaginary part I, is inversely proportional to co or directly to 

the cyclic period, a clear indication of the heat accumulation effect. 

Moreover, for quasi-steady state heating or cooling, i.e., co -» 0 the 

real part R, becomes asymptotically parabolic, as indicated by the 

leading term of equation (90). 

Tt is clear that for any combination of the physical parameters, 

whether it is a single-layer or multi-layer composite, there invariably 

exist asymptotic distributions of the in-phase and out-of-phase parts, R 

and I for different layers.  Their mathematical representations 

may be more involved, but the existence can be easily established. 

Numerical Results for 2-Layer Composites (Cyclic Flux).  As a 

reference combination, consideration is given to a two-layer composite 
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with both layers having identical physical properties.  Tn essence, it 

is a single layer analysis.  Computed response functions R and I are 

presented in Figure 25 for diffusion-cycle frequencies of w= 1, 6, 10 

and 20. 

It is clear from the graphical display that for 6= 1, the dis- 

tribution of I is almost asymptotic, which is given by equation (90) as 

-1.  A slight variation from x = 0 to x = 1 is, however, noted, indicat- 

ing its dependency on w yet.  For the real part, the distribution for u> 

= 1 is almost indistinguishable from that in equation (90) for w * 0. 

Translating these observations into thermal stress considerations, it is 

the bulk temperature rise that yields thermal stresses.  Hence it is the 

I-distribution that governs the stress magnitudes; and at low frequen- 

cies there would be higher stresses.  The thermal stresses caused by the 

R-distributions are, however, in self-equilibrium and these stresses 

contribute a thermal moment across the composite slab, resulting in its 

flexural bending as a consequence.  Naturally, as the frequency increas- 

es, the temperature distribution functions R and I diminish in magnitude 

and so do the thermal stresses.  These qualitative trends also apply to 

multi-layer composites. 

With two-layer composites, numerical computations were completed 

first with the outer layer (0.25 of the inner layer thickness) having a 

larger thermal capacity of 4 times the inner value.  The external 

coating behaves as a thermal sink with respect to the surface heating 

and results in a general reduction of the temperature responses in the 

inner layer.  Figure 26 indicates the response curves for R and I in the 

fame frequency range as in Figure 25.  While the real part R (in-phase 

with surface flux) shows very little change from those in Figure 25, the 
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imaginary part I (out-of-phase and for heat storage) indicates signifi- 

cant reductions in magnitude, thus reflecting the influence of the 

thermal capacity in the outer layer. 

The other parameter of interest is the thermal conductivity. By 

decreasing the coat layer conductivity to 0.2 of the inner layer (with 

equal thermal capacity for both), the response curves are shown in 

Figure 27. A notable feature is that the 1-distributions are very much 

similar to those in Figure 25, indicating little effect of low conducti- 

vities of the coat layer on the level of the bulk temperature change. 

There are, however, considerable increases of the R-distributions over 

those of Figure 25 for single layer performances. With the outer layer 

acting as a heat barrier, temperature differentials across the barrier 

are increased to account for the specified surface heat flux. Hence 

from a thermal protection viewpoint, low conductivity in the outer layer 

tends to produce greater thermal stresses. 

4.   CONCLUSIONS 

In this report, twc. transient heat conduction problems for applica- 

tion to the thermal evaluation of composite materials are analyzed and 

discussed. 

The purposes of these two analyses are at least two-fold: One is 

to demonstrate by detailed numerical results that composite materials 

with a larger in-plane thermal conductivity than the transverse value 

exhibit lower surface temperatures when the thermal loading consists of 

irradiation by a concentrated cylindrical beam. Effective radial heat 

spread along the  in-plane direction  serves  to reduce  local heat 
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accumulation and thereby mitigates heat-spot temperature rises. Accord- 

ingly, preventing or delaying damage due to high-intensity thermal 

radiation on composite surfaces can be enhanced by using materials with 

large in-plane thermal conductivities. The second objective of the 

investigation is to develop a methodology whereby composite panels 

undergoing cyclic heating and cooling can be analyzed for their periodic 

temperature responses. This is particularly important for determining 

thermal stresses resulting from alternating temperature fluctuations. 

The methodology developed is especially use.ful since numerical approach- 

es can be very time-consuming and unreliable. 
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NOMENCLATURE 

a heat beam radius 

C specific heat 

i,j node indexes 

k thermal conductivity 

L layer thickness 

P period of fluctuation 

Q,q heat flux intensity 

q,,q„      Fourier coefficients for heat flux A B 

r radial coordinate from spot (beam) axis 

T temperature rise 

w panel thickness 

x depth coordinate from insulated surface 

z depth coordinate from heating surface 

R real part of a complex function 

1 imaginary part of a complex function 

Non-dimensional Variables 

z =  (z/a) 

r =  (r/a) kr/kz 

0 -  (o 9/a2)  or  (tt 9/L 
2) 

7, St 

T -  (k T/aQ) z 
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Greek Symbols 

A grid size A = Ar = Ax = Az 

6 nondimensional time step 

a thermal diffusivity    k/pC 

p density 

u circular frequency 

(3 frequency parameter 

Subscripts 

b back surface, beam center 

c coating layer 

j ordinal number for layer 

o beam spot center 

r radia] direction 

s substrate layer 

t total 

z depth direction 
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APPENDIX 

Comparison of Results with Different Grid Sizes 

It is well established that computational results based on the 

finite-difference approach are sensitive to the grid size used.  The 

finer the grid size, the more accurate are the results; but far more 

time-consuming is the task.  Halving the grid size usually increases the 

process time by a factor of eight and more.  For this reason, some 

balance is needed between accuracy and excessive computational effort. 

In the computational effort undertaken is this report, the grid 

size is obtained by dividing the non-dimensional heat spot radius into 

five divisions.  Since the non-dimensional radius is defined by 

f = (r/a)Jk /k where a is the beam radius, each division of r is 
' z  r 

therefore equal to (Jk/k )/5.  In the depth direction, the dimension- 

less variable is z = (z/a), each stepAz is made equal to  Ar, and the 

number of divisions is determined by the width w and the ratio of k /k . J z  r 

Tn this way, a grid uniform in the non-dimensional coordinates, but 

non-uniform in the physical coordinates, is achieved. 

In order to ascertain typical differences in the results due to 

different grid sizes, the case of k /k =1 and w/a = 1 was analyzed by 

two parallel computations:  one using 5 divisions and the other, 10 

divisions for the heat spot radius.  Results of these two comparative 

calculations are presented in Figure A-l, which shows the spot center 

temperature rises as heating proceeds.  Naturally, the results based on 

10 divisions for the heat spot are more reliable than those based on a 

coarser grid.  However, the difference in the temperatures at the end of 
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the non-dimensional time 6= («6/a2) = 4 is quite small compared to 
z 

their mean value: the difference being 0.05 out of their average value 

of 1.2 at the spot center.  At the back surface of the slab, opposite to 

the spot center, the difference becomes 0.07 out. of their mean value of 

0.9.  The computer process times were 4 seconds and 55 seconds respecti- 

vely.  For other conductivity ratios k /k < 1 with a much finer grid in J z  r 

the z-direction than in the r-direction, the computer process time was 

found to be much more than 55 seconds. 

Additional comparisons of these two parallel sets of results are 

presented in Figures A-2 and A-3. The former shows, at the end of heating 

time 0 = 10, the isothermal lines of temperature 0.8, 0.6 and 0.4 of the 

spot center temperature.  The results using different grid sizes are 

nearly coincidental to each other.  Thus, the use of a smaller nurrber ol 

division is deemed adequate.  Shown in Figure A-3are the temperature 

profiles in the r-direction on the front and back surface at 8 = 10. 

Even though the spot-center temperature rises are 1.49 and 1,4] for 5 

and 10-direction calculations, their normalized (with respect to the 

spot-center temperature) curves are parallel to each other.  Thus, the 

use of 5-division  appears quite adequate for the demonstrative analysis 

presented in this report. 
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Figure A-3.  Effect of Grid Size on Surface Temperature Profiles, 

Spot Heating 
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